

SYLLABUS

1. Information about the study program

1.1 Higher education

institution

Babeș-Bolyai University

1.2 Faculty Faculty of Psychology and Educational Sciences

1.3 Department Department of Psychology

1.4 Field of study Psychology - Cognitive Sciences

1.5 Study cycle Bachelor level

1.6 Study program /

Qualification

Psychologist

2. Information about the course

2.1 Title of the course Algorithms and Programming

2.2 Teacher in charge of the lecture Conf. dr. Camelia Chira

2.3 Teacher in charge of the seminar Conf. dr. Camelia Chira

2.4 Study year 1 2.5 Semester 1 2.6. Examination

type

C 2.7 Course type C

3. Estimated total time (number of hours of teaching activities per semester)

3.1 Number of hours per week 4 out of which: 3.2

lecture

2 3.3 seminar /

laboratory

1+1

3.4 Total number of hours in the

curriculum

56 out of which: 3.5

lecture

28 3.6 seminar /

laboratory

28

Distribution of the allocated amount of time: hours

Individual study (textbook, course support, bibliography, and notes) 16

Supplementary documentation at the library using specialized electronic platforms

in the field

16

Preparing for seminars / laboratories, homework, papers, portfolios, and essays 16

Tutoring 15

Exams 6

Other activities: research activities

3.7 Total number of hours of

individual study

69

3.8 Total number of hours per

semester

125

3.9 Number of credits (ECTS) 5

4. Prerequisites (if applicable)

4.1 Curriculum ●

4.2 Competencies -

5. Requirements (if applicable)

5.1 For the lecture ● Classroom with at least 180 seats,

computer and video projector / Online course conducted

through the MS Teams platform.

5.2 For the seminar /

laboratory

● Room with at least 50 seats, computer and video

projector / Online seminar conducted through the MS

Teams platform.

6. Specific skills acquired

Professional

skills

Knowledge and understanding

 Definition and description of programming paradigms and of language

specific mechanisms, as well as identification of syntactic and semantic

differences.

 Description of existing software applications, on different levels of

abstraction (architecture, classes, methods) using adequate basic

knowledge.

Explanation and interpretation

 Elaboration of adequate source code and testing of components in a well-

known programming language, based on given specifications.

Instrumental - applicative

 Testing applications based on testing plans.

Attitude

Transversal

skills

 Application of efficient and rigorous working rules, manifest responsible

attitudes towards the scientific and didactic fields, underlying the individual

potential and respecting professional and ethical principles.

 Use of efficient methods and techniques for learning, information, research

and development of abilities for knowledge exploitation, for adapting to the

needs of a dynamic society and for communication in a widely used foreign

language.

7. Objectives of the course (based on the grid of acquired competencies)

7.1

General

objective

 To know the basic concepts of software engineering (design, implementation and

maintenance) and to learn Python programming language

7.2

Specific

objectives

 To know the key concepts of programming

 To know the basic concepts of software engineering

 To gain understanding of basic software tools used in development of programs

 To learn Python programming language and tools to develop, run, test and debug

programs

 To acquire and improve a programming style according to the best practical

recommendations

8. Content

8.1 Lecture Teaching strategies Remarks

1. Introduction to software development

processes

 What is programming: algorithm,

program, basic elements of the Python

language, Python interpreter, basic roles in

software engineering

 How to write programs: problem

statement, requirements, feature driven

development process

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

2. Procedural programming

 Compound types: list, tuple, dictionary

 Functions: test cases, definition, variable

scope, calling, parameter passing

 Test-driven development (TDD),

refactoring

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

3. Modular programming

 What is a module: Python module

definition, variable scope in a module,

packages, standard module libraries,

deployment Eclipse + PyDev

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

4. User defined types

 How to define new data types:

encapsulation, data hiding in Python,

guidelines

 Introduction to object-oriented

programming

 Exceptions

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

5. Object-oriented programming

 Abstract data types

 Implementation of classes in Python

 Objects and classes: classes, objects,

fields, methods, Python scope and

namespace

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

6. Software design guidelines

 Layered architecture: UI layer, application

layer, domain layer, infrastructure layer

 How to organize source code:

responsibilities, single responsibility

principle, separation of concerns,

dependency, coupling, cohesion

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

7. Program testing and inspection

 Testing methods: exhaustive testing, black

box testing, white box testing

 Automated testing, TDD

 File operations in Python

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

8. Recursion
 Notion of recursion

 Direct and indirect recursion

 Examples

 Computational complexity

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

9. Search algorithms

 Problem definition

 Search methods: sequential, binary

 Complexity of algorithms

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

10. Sorting algorithms

 Problem definition

 Sort methods: Bubble Sort, Selection Sort,

Insertion Sort, Quick Sort

 Complexity of algorithms

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

11. Problem solving methods (I)

 General presentation of the Backtracking,

Divide & Conquer methods

 Algorithms and complexity

 Examples

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

12. Problem solving methods (II) Lecture, demonstrative

 General presentation of the Greedy and

Dynamic Programming methods

 Algorithms and complexity

 Examples

example, synthesis of

knowledge, guided discovery

13. Revision

 Revision of most important topics covered

by the course

Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

14. Evaluation Lecture, demonstrative

example, synthesis of

knowledge, guided discovery

Mandatory references:

 M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006

 The Python Programming Language - https://www.python.org/

 The Python Tutorial - https://docs.python.org/3/tutorial/

Optional references:

 M.L. Hetland, Beginning Python: From Novice to Professional, Apress, 2005.

 K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

 M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley,

1999. http://refactoring.com/catalog/index.html

 The Python Standard Library - https://docs.python.org/3/library/index.html

8.2 Seminar / laboratory Teaching strategies Remarks

1. Simple Python programs
Exposure, conversation

2. Procedural Programming Presentation, knowledge

synthesis, conceptual

clarification, practical activities

3. Modular Programming Presentation, knowledge

synthesis, conceptual

clarification, group activities,

guided discovery, practical

activities

4. Abstract data types. Object-oriented

programming.

Presentation, knowledge

synthesis, conceptual

clarification, group activities,

guided discovery, practical

activities

5. Program design. Layered architecture Presentation, knowledge

synthesis, conceptual

clarification, group activities,

guided discovery, practical

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

activities

6. Search and sorting algorithms Presentation, knowledge

synthesis, conceptual

clarification, group activities,

guided discovery, practical

activities

7. Practical test Presentation, knowledge

synthesis, conceptual

clarification, group activities,

Guided discovery, practical

activities

Mandatory references:

 M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006

 The Python Programming Language - https://www.python.org/

 The Python Tutorial - https://docs.python.org/3/tutorial/

Optional references:

 M.L. Hetland, Beginning Python: From Novice to Professional, Apress, 2005.

 K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

 M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley,

1999. http://refactoring.com/catalog/index.html

 The Python Standard Library - https://docs.python.org/3/library/index.html

9. Correlations between the content of the course and the expectations of the

representatives of the epistemic community, professional associations and representative

employers in the field related to the program

 The course respects the IEEE and ACM Curricula Recommendations for Computer

Science studies.

 The course exists in the studying program of all major universities in Romania and

abroad.
 The content of the course is considered by the software companies as important for

average programming skills.

10. Evaluation
Activity type 10.1 Evaluation

criteria

10.2 Evaluation

methods

10.3 Weight in

the final grade

10.4 Lecture The correctness and

completeness of the

accumulated

knowledge and the

capacity to design and

implement correct

Written exam 40%

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Python programs

10.5 Seminar /

laboratory

Be able to design,

implement and test a

Python program

Practical exam

30%

Correctness of

assignments and

documentation

Assignments 30%

10.6 Minimum passing score

The final grade consists of:
a. score obtained in the written exam in proportion of 40%
b. practical exam and assignments 60%

The minimum passing score is 5.

Date 18/11/2021

Signature of the teacher in charge of the lecture

Conf. univ. dr. Camelia Chira

Signature of the teacher in charge of the seminar

Conf. univ. dr. Camelia Chira

Approval date in the department

Signature of the Head of the department /director

