SYLLABUS

1. Information about the study program

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Psychology and Educational Sciences
1.3 Department	Department of Psychology
1.4 Field of study	Psychology - Cognitive Sciences
1.5 Study cycle	Bachelor level
1.6 Study program /	Psychologist
Qualification	

2. Information about the course

3.9 Number of credits (ECTS)

2.1 Title of the course Behavioral C		ıl Ge	netics				
2.2 Teacher in charge of the lecture Professor Andrei C. Miu, Ph.D.							
2.3 Teacher in charge of the seminar			Р	rofessor Andrei C. Miu	, Ph.E).	
2.4 Study year	1	2.5 Semester	2 2.6. Examination E 2.7 Course type		DS		
				type			

3. Estimated total time (number of hours of teaching activities per semester)

4

3.1 Number of hours per week	3	out of which: 3.2	2	3.3 seminar /	1
		lecture		laboratory	
3.4 Total number of hours in the	42	out of which: 3.5	28	3.6 seminar /	14
curriculum		lecture		laboratory	
Distribution of the allocated amou	int of	time:			hours
Individual study (textbook, co	urse s	upport, bibliograp	ıy, and	notes)	25
Supplementary documentation	at th	e library using spe	cialized	l electronic platforms	15
in the field					
Preparing for seminars / laboratories, homework, papers, portfolios, and essays					14
Tutoring					2
Exams				2	
Other activities: research activities					
3.7 Total number of hours of		58			
individual study					
3.8 Total number of hours per		100			
semester					

4. Prerequisites (if applicable)

4.1 Curriculum	Introduction to Neuroscience Quantitative Research Methods and Statistics
4.2 Competencies	-

5. Requirements (if applicable)

5.1 For the lecture	Classroom with at least 180 seats, computer and video projector /	
	Online course conducted through the MS Teams platform.	
5.2 For the seminar /	Room with at least 50 seats, computer and video projector / Online	
laboratory	seminar conducted through the MS Teams platform.	

6. Specific skills acquired

	Knowledge and understanding				
	• Develops a general understanding of the genetic and environmental factors				
	that contribute to individual differences in behavior				
	• Becomes familiar with fundamental methods in behavioral genetics (e.g.,				
	twin studies, genetic association)				
Professional	Explanation and interpretation				
skills	• Develops a correct interpretation of individual differences in behavior, as				
	resulting from genetic and environmental differences				
	Instrumental - applicative				
	• Develops a basic understanding of interdisciplinary methods				
	Attitude				
	• Shows appreciation of the complex multifactorial nature of individual				
	differences in behavior				
Transversal	Written and oral communication skills				
skills	Relationship and teamwork skills'				
511115	Time management skills and the management of resources				

7. Objectives of the course (based on the grid of acquired competencies)

7.1 General objective	• To understand the contribution of genetic and environmental factors to individual differences in behavior
7.2 Specific objectives	 To become familiar with some of the main methods that are used to study genetic and environmental influences on behavior To understand fundamental concepts in genetics (e.g., DNA, gene, genome) To gain basic knowledge on gene-environment interactions and correlations that

have been linked to individual differences in behavior (e.g., personality,
intelligence, educational success, happiness)

8. Content

8.1 Lecture	Teaching strategies	Remarks
1. Behavioral genetics: History and current	Lecture, demonstrative	
perspective	example, synthesis of	
1 1	knowledge, guided discovery	
2. Mendelian inheritance	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
3. Non-Mendelian inheritance	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
4. Twin studies: Basic principles	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
5. Twin studies: Examples I	Lecture, demonstrative	
*	example, synthesis of	
	knowledge, guided discovery	
6. Twin studies: Examples I	Lecture, demonstrative	
*	example, synthesis of	
	knowledge, guided discovery	
7. Chromosomes and DNA	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
8. Transcription and translation	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
9. Candidate gene studies: Rise and fall	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
10. Gene \times environment interactions	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
11. Human genome	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	
12. Genome-wide association studies:	Lecture, demonstrative	
Principles	example, synthesis of	
	knowledge, guided discovery	
13. Genome-wide association studies:	Lecture, demonstrative	
Examples	example, synthesis of	
	knowledge, guided discovery	

14. Epigenetic regulation	Lecture, demonstrative	
	example, synthesis of	
	knowledge, guided discovery	

Mandatory references:

Knopik, V. S., Neiderhiser, J. M., DeFries, J. C., & Plomin, R. (2017). *Behavioral genetics* (ed. a 7-a sau mai recentă). Worth Publishers, New York.

Optional references:

Carey, G. (2002). *Human genetics for the social sciences*. Sage publications. Miu, A. C., Homberg, J. R., & Lesch, K. P. (Eds.). (2019). *Genes, brain, and emotions: Interdisciplinary and Translational Perspectives*. Oxford University Press.

8.2 Seminar / laboratory	Teaching strategies	Remarks
Keywords:	Conceptual clarification, conversation, practical activities	
1. Eugenics: A dark page in the history of genetics	Conceptual clarification, conversation, practical activities	
2. The story of the rediscovery of Mendel's findings	Conceptual clarification, conversation, practical activities	
2. Genomic imprinting: An exception to Mendelian inheritance	Conceptual clarification, conversation, practical activities	
3. Ronald Fisher's view of heredity	Conceptual clarification, conversation, practical activities	
4. What is a twin register?	Conceptual clarification, conversation, practical activities	
5. Outlook of twin studies: part I	Conceptual clarification, conversation, practical activities	
6. Outlook of twin studies: part I	Conceptual clarification, conversation, practical activities	
7. How was the structure of DNA discovered?	Conceptual clarification, conversation, practical activities	
8. The genetic code	Conceptual clarification, conversation, practical activities	
9. Types of gene-environment interactions	Conceptual clarification, conversation, practical activities	

10. Differential susceptibility	Conceptual clarification, conversation, practical activities	
11. How many genes do we have?	Conceptual clarification, conversation, practical activities	
12. GWAS: Limitations and outlook	Conceptual clarification, conversation, practical activities	
13. GWAS in the study of mental health	Conceptual clarification, conversation, practical activities	
14. Intergenerational epigenetic transmission: Critical perspective	Conceptual clarification, conversation, practical activities	

Mandatory references:

Allen, G. E. (2001). Is a new eugenics afoot?. Science, 294(5540), 59-61.

Bodmer, W., Bailey, R. A., Charlesworth, B., Eyre-Walker, A., Farewell, V., Mead, A., & Senn, S. (2021). The outstanding scientist, RA Fisher: his views on eugenics and race. *Heredity*, *126*(4), 565-576.

Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. *Development and Psychopathology*, *23*(1), 7-28.

Fairbanks, D. J. (2020). Mendel and Darwin: untangling a persistent enigma. *Heredity*, *124*(2), 263-273.

Friedman, N. P., Banich, M. T., & Keller, M. C. (2021). Twin studies to GWAS: there and back again. *Trends in Cognitive Sciences*, 25(10), 855-869.

Horwitz, T., Lam, K., Chen, Y., Xia, Y., & Liu, C. (2019). A decade in psychiatric GWAS research. *Molecular Psychiatry*, *24*(3), 378-389.

Ho-Shing, O., & Dulac, C. (2019). Influences of genomic imprinting on brain function and behavior. *Current Opinion in Behavioral Sciences*, *25*, 66-76.

Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. *Molecular Psychiatry*, *12*(5), 432-442.

Odintsova, V. V., Willemsen, G., Dolan, C. V., Hottenga, J. J., Martin, N. G., Slagboom, P. E., ... & Boomsma, D. I. (2018). Establishing a twin register: An invaluable resource for (behavior) genetic, epidemiological, biomarker, and 'omics' studies. *Twin Research and Human Genetics*, *21*(3), 239-252.

Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits

based on fifty years of twin studies. Nature Genetics, 47(7), 702-709.

Portin, P. (2014). The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. *Journal of Genetics*, *93*(1), 293-302.

Salzberg, S. L. (2018). Open questions: How many genes do we have?. *BMC Biology*, *16*(1), 1-3.

Optional references:

Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. *Nature Reviews Genetics*, *3*(11), 872-882.

Dahm, R. (2005). Friedrich Miescher and the discovery of DNA. *Developmental Biology*, 278(2), 274-288.

Greenspan, R. J. (2008). The origins of behavioral genetics. *Current Biology*, 18(5), R192-R198.

Martin, N., Boomsma, D., & Machin, G. (1997). A twin-pronged attack on complex traits. *Nature Genetics*, 17(4), 387-392.

9. Correlations between the content of the course and the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program

Behavioral genetics has developed at the intersection of psychology and genetics, and offers a rich perspective on the genetic and environmental sources of individual differences. Theoretical and methodological training is indispensable for students of psychology, considering that any topic in psychology touches upon individual differences and their underlying mechanisms.

10. Evaluation

100 E Minanion			
Activity type	10.1 Evaluation	10.2 Evaluation	10.3 Weight in
	criteria	methods	the final grade
10.4 Lecture	Understanding basic	Written exam	7/10
	concepts		
10.5 Seminar /	Reading the	Q&A	3/10
laboratory	bibliography and		
	participating in group		
	discussions		
10.6 Minimum passing score: 5			
The final grade consists of:			
a. score obtained in the written exam in proportion of 70%			
b. seminar activity 30%			

Date

Andria le.

Signature of the teacher in charge of the lecture

Professor Andrei C. Miu, Ph.D.

Signature of the teacher in charge of the seminar Professor Andrei C. Miu, Ph.D. Andria

Approval date in the department

Signature of the Head of the department /director

Professor Oana Benga, Ph.D.